FRACTAL CONCEPTS IN SURFACE GROWTH

Albert-László Barabási

IBM Thomas J. Watson Research Center, Yorktown Heights, New York

H. Eugene Stanley

Physics Department, Boston University Boston, Massachusetts

Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1995

First published 1995

A catalogue record of this book is available from the British Library

Library of Congress cataloguing in publication data

Barabási, Albert-László Fractal concepts in surface growth / Albert-László Barabási, H. Eugene Stanley.

p. cm. Includes bibliographical references and index. ISBN 0 521 48308 5 – ISBN 0 521 48318 2 (pbk.)

- 1. Surfaces (Physics). 2. Interfaces (Physical sciences)
- 3. Crystal growth. 4. Molecular beam epitaxy. 5. Fractals. I. Stanley, H. Eugene (Harry Eugene), 1941 II. Title. QC173.4.S94B37 1995 530.4'17-dc20 93-37111 CIP

ISBN 0 521 48308 5 hardback ISBN 0 521 48318 2 paperback

Transferred to digital printing 2002

Contents

	Pref	ace	XV
	Nota	ation guide	xix
PΑ	RT 1	Introduction	1
1	Inter	rfaces in nature	1
	1.1	Interface motion in disordered media	3
	1.2	Deposition processes	(
	1.3	Biological systems	13
	1.4	Methods of analysis	16
	1.5	Discussion	18
2	Scaling concepts		19
	2.1	Ballistic deposition	19
	2.2	Roughening	20
	2.3	Dynamic scaling	23
	2.4	Correlations	25
	2.5	Discussion	27
3	Frac	etal concepts	29
	3.1	Self-similarity	29
	3.2	Fractal dimension	30
	3.3	Self-affinity	32
	3.4	Discussion	36
Ра	RT 2	Nonequilibrium roughening	38
4	Ranc	dom deposition	38
	4 1	Definition	35

	4.2	Exact solution	40
	4.3	Stochastic growth equations	41
	4.4	Discussion	42
5	Linear theory		44
	5.1	Random deposition with surface relaxation	44
	5.2	Symmetry principles	46
	5.3	The Edwards-Wilkinson equation	48
	5.4	Solving the EW equation	51
	5.5	Discussion	54
6	Kar	dar–Parisi–Zhang equation	56
	6.1	Construction of the KPZ equation	56
	6.2	Excess velocity	58
	6.3	Scaling arguments	60
	6.4	Exponents	61
	6.5	Discussion	63
7	Renormalization group approach		65
	7.1	Basic concepts	65
	7.2	Re-scaling in momentum space	69
	7.3	Flow equations for the KPZ equation	71
	7.4	Phase transition in the KPZ equation	73
	7.5	Exponents for $d > 1$	74
	7.6	Discussion	76
8	Disc	crete growth models	78
	8.1	Ballistic deposition	78
	8.2	Eden model	79
	8.3	Solid-on-solid models	81
	8.4	Propagation of interfaces in the Ising model	87
	8.5	Numerical integration of the KPZ equation	88
	8.6	Discussion	90
PΑ	кт 3	Interfaces in random media	91
9	Basi	c phenomena	91
	9.1	Depinning transition	92
	9.2	Interfaces in a disordered medium	93
	9.3	Scaling arguments	95
	9.4	Thermal noise	97
	9.5	Discussion	98

Contents xi

10	Quenched noise		99
	10.1 Universality	classes	100
	10.2 Pinning by	directed percolation	103
	10.3 Isotropic gr	owth models	109
	10.4 Discussion		113
11	Experiments		115
	11.1 Fluid flow	in a porous medium	115
	11.2 Paper wetti	ng	119
		n of burning fronts	122
	11.4 Growth of	bacterial colonies	123
	11.5 Rupture lin	es in paper sheets	125
	11.6 Discussion		127
PA	кт 4 Molecular b	eam epitaxy	128
12	Basic phenomena	of MBE	128
	12.1 Introductio	n	128
	12.2 Microscopie	c processes on crystal surfaces	130
	12.3 Discussion		136
13	Linear theory of	MBE	139
	13.1 Surface diff	Cusion	139
	13.2 Solving the	diffusive growth equation	142
	13.3 Growth wit	th desorption	142
	13.4 Discussion		144
14	Nonlinear theory	for MBE	146
	14.1 Surface diff	fusion: Nonlinear effects	146
	14.2 Growth wit	th desorption	150
	14.3 Discussion		152
15	Discrete models for MBE		153
	15.1 Irreversible		154
	15.2 Models wit	h thermal activation	159
	15.3 Hamiltonia	n models	163
	15.4 Discussion		164
16	MBE experiment	es .	166
	16.1 Experiment	tal techniques	167
	16.2 Scaling app	proach for interface roughening	169
	16.3 Dynamical	properties	170

	16.4	Discussion	172
17	Subr	nonolayer deposition	175
	17.1	Model	175
	17.2	Scaling theory	176
	17.3	Rate equations	180
	17.4	Results from simulations	181
	17.5	Extensions of the DDA model	183
	17.6	Experimental results	187
	17.7	Discussion	191
18	The	roughening transition	192
	18.1	Equilibrium fluctuations	192
	18.2	Discrete models and experimental tests	199
	18.3	Nonequilibrium effects	201
	18.4	Discussion	206
19	Nonlocal growth models		209
	19.1	Diffusion-limited aggregation	209
		Sputter deposition	212
		Experimental results on sputter deposition	219
		Roughening by ion bombardment	225
	19.5	Discussion	229
20	Diffu	sion bias	231
	20.1	Diffusion bias and instabilities	231
	20.2	Nonlinear theory	232
		Discrete models	235
	20.4	Experimental support	237
	20.5	Discussion	239
PA	RT 5	Noise	240
21	Diffu	sive versus deposition noise	240
		Conservative noise	240
		Linear theory	241
		Scaling regimes	242
		Nonlinear theory	243
	21.5	Discussion	244
22	Corre	elated noise	245
	22.1	Introducing correlated noise	246

Contents	xiii
----------	------

	22.2	Linear theory with correlated noise	246
	22.3	KPZ equation with spatially-correlated noise	248
	22.4	KPZ equation with temporally-correlated noise	250
	22.5	Discussion	252
23	Rare	events	253
	23.1	Linear theory	254
	23.2	Nonlinear theory	257
	23.3	Multi-affinity	259
	23.4	Discussion	261
PA	rt 6	Advanced topics	262
24	Mult	ti-affine surfaces	262
	24.1	Hierarchy of scaling exponents	263
	24.2	A deterministic multi-affine model	264
	24.3	Brownian motion	266
	24.4	Local dimensions	266
25	Varia	ants of the KPZ equation	269
	25.1	Deterministic KPZ equation	269
	25.2	Anisotropic KPZ equation	271
	25.3	Universal amplitudes	275
	25.4	Discussion	276
26	Equi	librium fluctuations and directed polymers	277
	26.1	Discrete model	277
	26.2	Scaling properties	278
	26.3	Continuum description	279
	26.4	Equilibrium theory	280
	26.5	Discussion	284
PA	rt 7	Finale	285
27	Sum	mary of the continuum growth equations	285
	27.1	Universality classes	285
	27.2	Nomenclature	287
	27.3	Related problems	289
	27.4	Discussion	296
28	Outl	ook	298

APPENI	DIX A Numerical recipes	301
A.1	Measuring exponents for self-affine interfaces	301
A.2	The coefficient λ of the nonlinear term	307
A.3	Intrinsic width	309
A.4	Measuring surface diffusion currents	310
A.5	Generating noise in simulations	311
APPENI	DIX B Dynamic renormalization group	315
B.1	Introduction	315
B.2	Perturbation expansion	316
B.3	Renormalization procedure	323
B.4	Calculation of the integrals	325
APPENI	DIX C Hamiltonian description	330
Bibli	iography	332
Inde.	x	359

I Interfaces in nature

Most of our life takes place on the surface of something. Sitting on a rock means contact with its surface. We all walk on the surface of the Earth and most of us don't care that the center of the Earth is molten. Even when we care about the interior, we cannot reach it without first crossing a surface. For a biological cell, the surface membrane acts not only as a highly selective barrier, but many important processes take place directly on the surface itself.

We become accustomed to the shapes of the interfaces we encounter, so it can be surprising that their morphologies can appear to be quite different depending on the scale with which we observe them. For example, an astronaut in space sees Earth as a smooth ball. However Earth appears to be anything but smooth when climbing a mountain, as we encounter a seemingly endless hierarchy of ups and downs along our way.

We can already draw one conclusion: surfaces can be smooth, such as the Himalayas viewed from space, but the same surface can also be rough, such as the same mountains viewed from earth. In general the morphology depends on the length scale of observation!

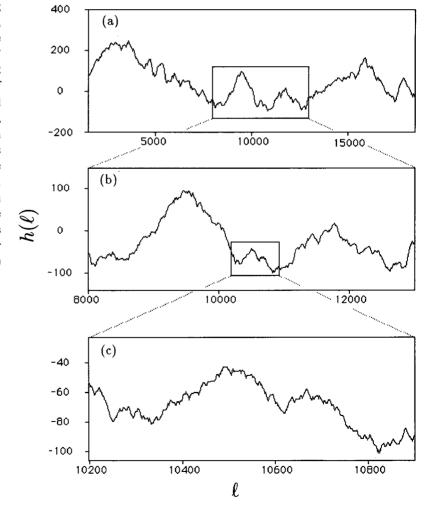
How can we describe the morphology of something that is smooth to the eye, but rough under a microscope? This is one question we shall try to answer in this book. To this end, we will develop methods to characterize quantitatively the morphology of an arbitrary interface. In fact, we shall see that concepts like roughness are replaced by exponents that refer not to the roughness itself, but to the fashion in which the roughness *changes* when the observation scale itself changes.

Fractal objects in nature are the same on different observation scales. However, the above examples look rather different when the scale is changed. Does this fact imply that the title of this book is a misnomer? Yes and no. In fact, many interfaces and surfaces are

examples of self-affine objects, which are 'intermediate' between fractal objects and non-fractal objects in the following sense. When we make a scale change that is the same in all directions, self-affine objects change morphology. On the other hand, when we make a scale change that is different for each direction, then interfaces do not change morphology. Rather, they behave like fractal objects in that they appear the same before and after the transformation (see Fig. 1.1).

This book will explore in some detail the nature of such self-affine objects. We shall see that this feature is analogous to a 'symmetry principle.' Symmetry principles codified in group theory enable one

Figure 1.1 Rescaling a self-affine function, in this case the 'DNA walk' introduced in §1.3.2 (cf. Fig. 1.13). Only if the two unequal magnification factors, M_{ℓ} and M_h , by which the ℓ and h directions are re-scaled, are selected correctly will the enlarged portion have the same statistical properties as the original. (After [416].)



to classify and eventually understand some properties of a crystalline system. Similarly, the symmetry obeyed by self-affine objects will enable us to classify and perhaps better understand some properties of rough interfaces in nature.

We are interested not only in the *morphology* of various 'pre-formed' interfaces, but also in the dynamics of how the morphology develops in time. Some surfaces are formed as a result of a deposition process. Others shrink due to erosion or etching. Some interfaces propagate through inhomogeneous media. An interesting set of questions concerns the *formation*, *growth*, and dynamics of such interfaces.

In this first chapter, we offer the interested reader an apéritif – by exposing a variety of the themes of this book without the baggage imposed by requiring equations or discussing experimental details. The reader whose appetite is already 'up' for the main course is invited to proceed directly to Chapter 2.

I.I Interface motion in disordered media

1.1.1 Fluid flow in porous media

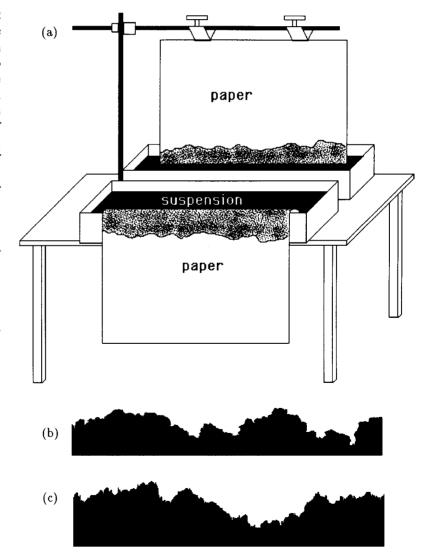
A familiar scene: at breakfast, your spilled coffee suddenly conquers a segment of the tablecloth. Probably this is not the right moment to contemplate the microscopic forces that balance just when the coffee stops spreading. Nor is it the appropriate moment to start thinking about the shape of the patch, or the roughness of its surface. So wait until the stress subsides, and then examine the large brown patch.

By clipping a paper towel on a stand and immersing one end into a fluid, we can repeat the coffee accident on a laboratory benchtop. Paper is an inhomogeneous material, a prototype of the porous inhomogeneous rock that holds oil! One difference between fluid flow in the paper towel and in oil-bearing rock arises from the length scales at which these phenomena take place. This difference is an advantage: we can use a 20 cm paper towel system (Fig. 1.2) to help develop our understanding of the 20 km oilfield problem. For example, we can characterize the wet—dry interface using scaling laws, whose form is predicted by simple models that capture the essential mechanisms contributing to the morphology. This 'benchtop exercise' is an example of some of the current experiments being carried out on idealized systems which are yielding new insights into practical interface problems.

1.1.2 Propagation of flame fronts

Take a sheet of paper and ignite it at one end. Try to keep it horizontal, so that the entire paper does not take flame at once – if possible, use paper that burns without flame. After burning a part of it, inspect the interface between the burned and unburned parts (see Fig. 1.3). Is it rough, similar to the edge of the coffee droplet on the tablecloth? Is this similarity a coincidence, or there is something in common between these processes?

Figure 1.2 (a) Schematic illustration of an experimental setup probing interface motion in random media. Parameters such as type of paper, temperature, humidity, direction of growth and concentration of coffee can be varied systematically. These changes affect the area, the speed of wetting, and the global width of the rough surface, but they do not affect the scaling properties of the surface. (b) Digitized experimental interface; the horizontal size of the paper was 20 cm. (c) Typical result of a discrete model mimicking interface motion in disordered media (see §10.2). (After [31]).



1.1.3 Flux lines in a superconductor

Suppose we place a superconductor in an external magnetic field. The field penetrates the material by generating flux lines or vortices, each carrying an elementary flux (see Fig. 1.4). If there are no impurities in the superconductor and the temperature is low, the flux lines form an array of straight lines. If there are impurities in the superconductor, the flux lines stretch to get close to the impurity sites. These individual flux lines are rough, resembling the surface of the coffee drop, or the fire front. However, there is one important difference between a flux line and a fire or fluid interface: a firefront is a topologically one-dimensional object moving in a two-dimensional plane, while a

Figure 1.3 An 8 cm segment of paper in which fire propagates from below. (After [504]).

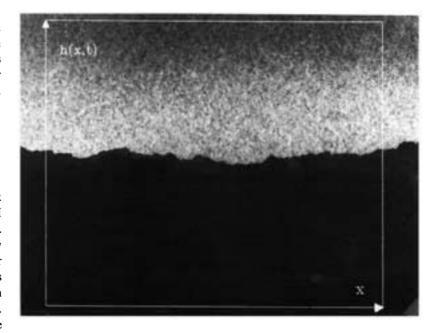
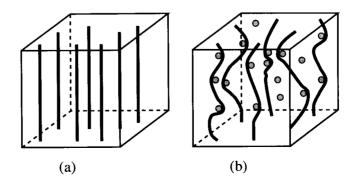


Figure 1.4 Vortex lines in a type II superconductor. (a) In a perfectly clean superconductor at low temperatures the flux lines form an ordered lattice. (b) When the temperature is increased, thermal fluctuations destroy the ordered lattice and the flux lines become wavy. If there are impurities (shaded circles) in the superconductor, the flux lines are pinned in random positions of the impurities.



flux line is a topologically one-dimensional object fluctuating in a three-dimensional space.

One purpose of this book is to discuss apparently different phenomena using a common framework. It is coming to be appreciated that all the systems discussed in this section display essentially the same physics: there is an elastic interface ('elastic' in the sense that it does not break, but tries to remain smooth) which propagates in a disordered material. The randomness of the substrate acts to pin the interface, thereby making the interface rough. In the fluid case, local inhomogeneities may block the fluid flow. Some parts of the paper do not burn as rapidly as others, so the flame is halted. Impurities attract the flux line and pin it down in random positions. We shall see that these systems are described by the same laws, and that they can be studied using a similar set of numerical and analytical methods.

1.2 Deposition processes

Winter. Look out of your car window – snow is falling. The larger snowflakes slide down the window slowly, and form the aggregate shown in Fig. 1.5(a). Notice that at length scales comparable to the size of the snowflake the aggregate is very rough. Why? Snowflakes are deposited randomly. Once they arrive at the aggregate, they stick. The *randomness* in the deposition process apparently leads to a *rough* surface. A similar deposition process is illustrated in Fig. 1.5(b). The resulting bulk is nearly homogeneous, but the surface is quite rough. These are but two of the many examples for which random deposition of some material occurs, and we witness the dynamic growth of a rough surface.

1.2.1 Atom deposition

A deposition process of greater technological importance than snowfall takes place during the growth of thin films by molecular beam epitaxy (MBE), a technology used to manufacture computer chips and other semiconductor devices, indispensable in today's technological world. The most common element used in computer chips is silicon. An example of a very clean Si surface is shown in Fig. 1.6, obtained using a scanning tunneling microscope (STM).

Now imagine that you start depositing new atoms on this Si surface. In contrast to the snowflakes that stick on the first contact point, the Si atom does not stick, but diffuses. When a Si atom reaches the edge

of a step, it forms covalent bonds with neighboring atoms, and sticks with a high probability. Such bonds may be broken again, but with a low probability. If the incoming flux is large, there is a large number

Figure 1.5 (a) Snow particles falling on a slanted glass window (After [270]); (b) The interface generated by a simple deposition model, in which spherical particles with uniformly distributed random diameters arrive on the surface and roll until they make contact with at least two other discs. (After [89]).

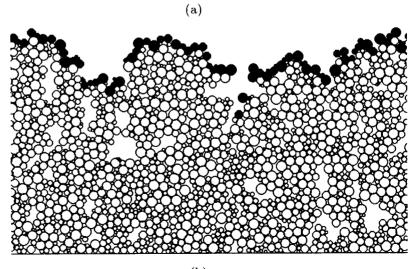


Figure 1.6 A Si surface, as examined by STM. One can distinguish both individual atoms and vacancies. The rugged lines correspond to steps on the surface, where the height of the interface increases by one atom. (Courtesy of M. Lagally).

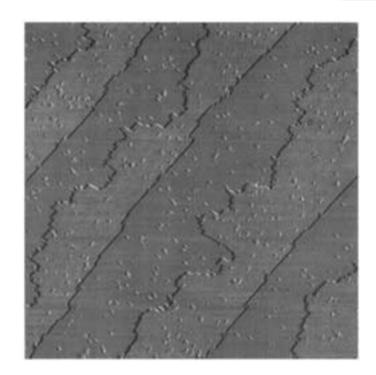


Figure 1.7
Formation of islands
by atoms deposition
on a Si surface.
(Courtesy of M.
Lagally).

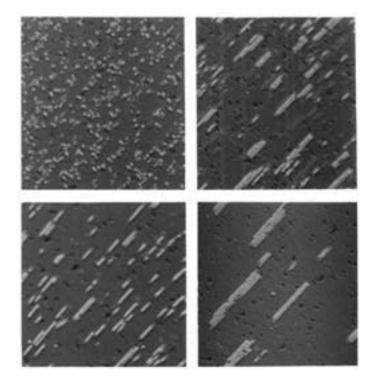
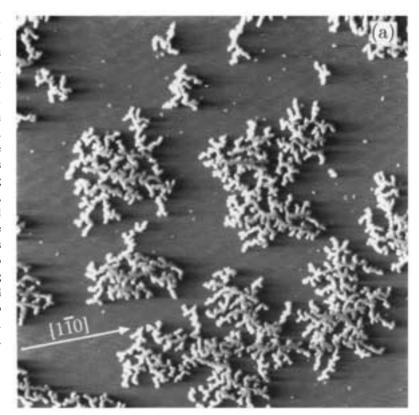


Figure 1.8 (a) Branched island morphologies obtained by Ag atom deposition on Pt at 110 K. (After [57]). (b) Island formation in a model incorporating the three basic processes taking place during MBE: deposition, diffusion, and aggregation. The deposited atoms aggregate due to diffusion, generating branched fractal islands, similar to those observed in (a). (After [197]).





of wandering atoms on the surface, which meet and 'glue' together, forming islands (see Fig. 1.7).

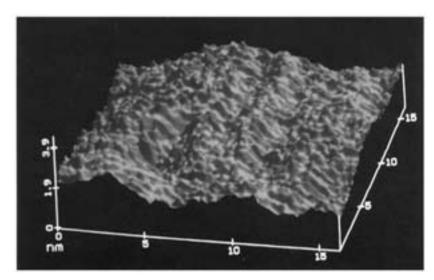
The islands do not always have a regular shape. As Fig. 1.8 illustrates, Ag deposition on Pt surfaces leads to branched structures, which are known to be self-similar, or fractal. What is the difference between the Si and the Pt that accounts for the difference in island structure? Is it related to the difference in the material properties, or only to the different temperatures and deposition rates?

1.2.2 Roughening in MBE

If we continue to deposit atoms, smaller islands will form on the top of the larger islands. The interface eventually becomes quite rough (see Fig. 1.9). Our discussion so far suggests that we may be happy whenever we see a rough surface. However, engineers usually wish to make a *smooth* film, since rough surfaces have poor contact properties and cannot be used in most applications. In order to avoid roughness, one first must understand the basic mechanism leading to roughness, and the processes affecting the morphology in general. This understanding then may be explored to grow films in regimes where roughening is reduced or absent.

Another common method used in film deposition experiments is sputtering. During *sputter erosion* the material is bombarded with an ion beam that hits the surface and kicks out atoms. This process is used to clean a surface, by eroding a few layers – or, by guiding

Figure 1.9 STM image of a rough Ag substrate. (After [243]).



the eroded atoms towards a sample, to grow another surface by a process called *sputter deposition*. Films grown by sputter deposition sometimes develop interesting 'cauliflower' structures, as is shown in Fig. 1.10. Why do these manmade films resemble so well the natural cauliflower?

The actual surface morphology in sputter erosion depends on the experimental conditions; some experiments lead to rough interfaces, others to periodic ripple structures (Fig. 1.11). What is the mechanism of the roughening process? Is erosion simply the inverse of deposition, or does it involve processes not present during deposition? How do we explain the formation of the ripple structures on the surface?

Figure 1.10 Micrographs showing the similarity in morphology for various materials at different magnifications these span roughly six orders of magnitude in linear dimension. (a) TEM micrograph of a-Ge; (b) SEM micrograph of a-Si on glass substrate; (c) SEM micrograph of a-Si on polycrystalline Al substrate; (d) optical micrograph of pyrolytic graphite; (e) optical micrograph of a thick metal film, and (f) photograph of a cauliflower. (After [316]).

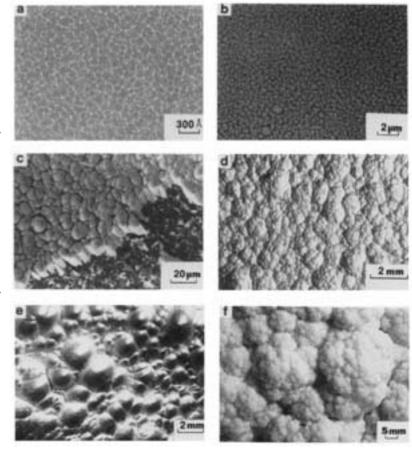
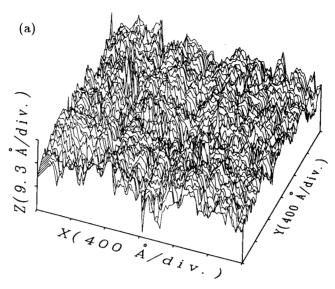
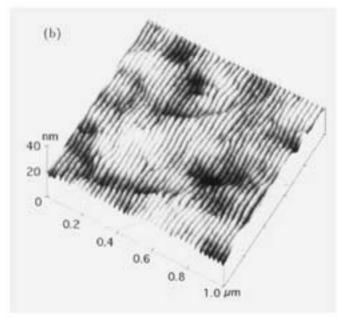


Figure 1.11 (a) STM topograph of a graphite surface after bombarding with a flux $F = 6.9 \times 10^{13}$ $ions.cm^{-2}sec^{-1}$ and an ion fluence $Q = 10^{16} \text{ ions/cm}^2 \text{ at}$ room temperature. The sample size is 2400 Å ×2400 Å, and the vertical size 18.6 Å. (After [114]). (b) Atomic force microscope image of a Xe-bombarded SiO₂ film. Note the periodic ripple structure. (After [301]).





1.3 Biological systems

1.3.1 Bacterial growth

The previous examples were selected from the field of materials science. But there are also interesting interfaces in biology. Let us consider a much-studied problem, the growth of bacterial colonies. In a typical experimental setup, agar is prepared in a petri dish. In the middle of the agar a bacterium is inoculated, whereupon it multiplies. At microscopic length scales, the bacteria exhibit a random motion. Looking from a distance, however, a range of interesting morphologies can be observed (Fig. 1.12). The actual morphology depends on the nutrient concentration and on other experimentally-controllable parameters. Some colonies have a compact shape, with a rough surface, similar to the morphology we confronted with spilt coffee. Others are branched, reminiscent of the islands observed in atomic deposition. Are there some general principles common to bacterial growth, island formation, and fluid flow?

1.3.2 DNA

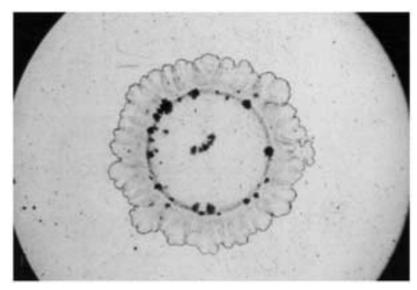
Many systems develop well-defined interfaces. However, there are processes that do not have a surface at all, but with a natural choice of variables can be mapped to a mathematical function or 'landscape' whose roughness is amenable to analysis using the same methods used for real interfaces.

An example that at first sight has nothing to do with interfaces is one-dimensional Brownian motion. Consider a drunk in an elevator of a skyscraper. Let us imagine that the elevator has only two buttons, up and down: the up button takes the elevator one level up, the down button one level down. The drunk punches the buttons randomly. If we plot the position of the elevator as a function of time, we obtain a jagged landscape, called the trail of the random walk, which may be described by many of the same methods used to quantify interface morphology.

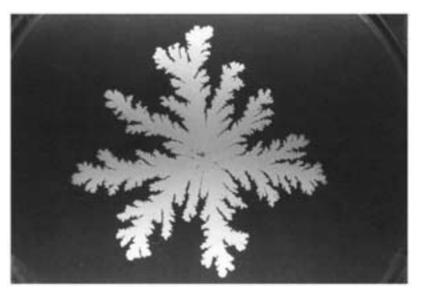
Genomic DNA sequences code for protein structure. The human genome contains information for approximately 100 000 different proteins, which define all inheritable features of an individual – it is likely the most sophisticated information database, created entirely through the dynamic process of evolution.

The building blocks for coding this information, called *base pairs*, form two classes, purines and pyrimidines. In order to study the correlations of a DNA sequence, one can introduce a graphical rep-

Figure 1.12
Examples of bacteria
colonies. (a) A
colony with roughly
compact shape.
(After [39].) (b) A
colony with a
branched
morphology,
resembling the DLA
growth model
described in Chapter
19. (After [296]).



(a)

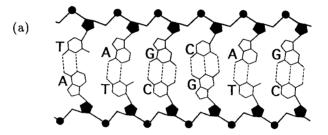


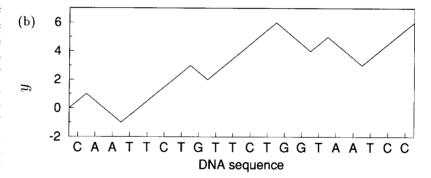
(b)

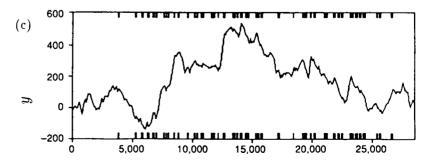
resentation of the base pair sequence. This 'DNA walk' allows one to visualize directly the fluctuations of the purine-pyrimidine content in DNA sequences: an 'uphill drift' in a region of the landscape corresponds to high local concentration of pyrimidines, while a 'downhill drift' corresponds to high local concentration of purines.

Figure 1.13 shows a typical example of a gene that contains a significant fraction of base pairs that do *not* code for amino acids. The advantage of the DNA walk representation is that it can be quantitatively studied using the methods developed for interfaces. The methods reveal the surprising fact that such noncoding DNA,

Figure 1.13 (a) The base pairing of two DNA strands to form a double helix. So far as the information content is concerned. a DNA sequence can be represented as a symbolic sequence of four letters: A, C, G and T. (b) Schematic illustration of the definition of the 'DNA walk'. The walker steps 'up' [u(i) = +1] if a pyrimidine (C or T) occurs at position i along the DNA chain, while the walker steps 'down' [u(i) = -1] if a purine (A or G) occurs at position i. (c) DNA walk for a DNA sequence comprising more than 25 000 base pairs. (After [60]).







previously believed to have at most correlations of very short range, in fact displays long-range correlations [60]. The implications of this result for the possible language characterizing the noncoding DNA is a topic under current investigation [290].

1.4 Methods of analysis

Each field has its own methods for treating a given problem. The development of new approaches, with more descriptive and predicting power, is one of the major goals of science. For the field of disorderly surface growth there are a number of standard tools that must be mastered. We briefly discuss four important methods that are developed and used throughout the book.

1.4.1 Scaling concepts

One of the modern concepts used to study various roughening processes is *scaling*. Scaling has a surprising power of prediction, simple manipulations allowing us to connect apparently independent quantities and exponents.

We shall see that many measurable quantities obey simple scaling relations. For example, for a large number of systems we shall find that the interface width, w(t), increases as a power of time, $w(t) \sim t^{\beta}$. The width eventually saturates at a value that increases as a power law of the system size, $w(L) \sim L^{\alpha}$.

Studying such scaling relations will allow us to define *universality* classes. The universality class concept is a product of modern statistical mechanics, and codifies the fact that there are but a few essential factors that determine the exponents characterizing the scaling behavior. Thus different systems which at first sight may appear to have no connection between them, behave in a remarkably similar fashion.

The values of the exponents α and β are independent of many 'details' of the system. For example, α and β do not depend on whether we immerse the paper in ink or coffee, or if we use a paper towel or a tablecloth. In fact, we shall see that the scaling exponents obtained for the fluid flow problem coincide with the scaling exponents obtained for the burning front, despite the rather different mechanisms leading to the actual interface.